An Integral Representation of Standard Automorphic L Functions for Unitary Groups
نویسنده
چکیده
Let F be a number field, G the general linear group of degree n defined over F. Let π be an irreducible cuspidal automorphic representation of G(A). In [1–3], a Rankin-Selbergtype integral is constructed to represent the L function of π. That the integrals of Jacquet, Piatetski-Shapiro, and Shalika are Eulerian follows from the uniqueness of Whittaker models and the fact that cuspidal representations of GLn are always generic. For other reductive group whose cuspidal representations are not always generic, in [4], PiatetskiShapiro and Rallis construct a Rankin-Selberg integral for symplectic group G= Sp2n to represent the partial L function of a cuspidal representation π of G(A). In this paper, we apply similar method to the quasi-split unitary group of rank n. Let F be a number field, E a quadratic field extension of F. Let V be a 2n-dimensional vector space over E with an anti-Hermitian form
منابع مشابه
Some bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملAutomorphic Representations and L-functions
• Decomposition by central characters • Square-integrable cuspforms • Smoothness of cuspforms • Eigen-cuspforms and automorphic representation • Dirichlet series versus zeta and L-functions • L-functions defined via local data • Factoring unitary representations of adele groups • Spherical representations and Satake parameters • Local data, L-groups, higher L-functions References and historical...
متن کاملLower Bounds for Moments of Automorphic L-functions over Short Intervals
Let L(s, π) be the principal L-function attached to an irreducible unitary cuspidal automorphic representation π of GLm(AQ). The aim of the paper is to give a simple method to show the lower bounds of mean value for automorphic L-functions over short intervals.
متن کاملIntegral representation for L-functions for GSp4 ×GL2, II
Based on Furusawa’s theory [7], we present an integral representation for the L-function L(s, π× τ), where π is a cuspidal automorphic representation on GSp4 related to a holomorphic Siegel modular form, and where τ is an arbitrary cuspidal automorphic representation on GL2. As an application, a special value result for this L-function in the spirit of Deligne’s conjecture is proved.
متن کاملTransfer of Siegel Cusp Forms of Degree 2
Let π be the automorphic representation of GSp4(A) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and τ be an arbitrary cuspidal, automorphic representation of GL2(A). Using Furusawa’s integral representation for GSp4 ×GL2 combined with a pullback formula involving the unitary group GU(3, 3), we prove that the L-functions L(s, π× τ ) are “nice”. The conve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007